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Probability graph paper enables the statistical analysis of frequency data to be accomplished graphically in 
a way which gives students an easily comprehended visual representation of normal and non-normal 
distribution statistics. Approximations to a t-test are possible, as is the separation of two overlapping 
normal distributions. Procedural instructions are provided with numerical examples and the relevant 
probability paper graphs.  

 
 

INTRODUCTION 
 
The use of probability graph paper (PP)1 in the study and comparison of distributions in ecology was 

described by Lewis and Taylor (1967).  Harding (1949) had earlier addressed the separation of polymodal distributions 
using PP. Although included by Southwood (1966) in his seminal work Ecological Methods, most ecologists have 
probably never explored the uses of PP in their discipline, and it is timely to raise awareness of the uses of this form of 
graph paper.  
 Although mathematicians would probably argue that the use of PP with non-normal distributions is not 
entirely justifiable, comparison of the technique with more elaborate computational methods suggests that PP methods 
are unlikely to lead to misleading conclusions.  
 There is practical value in being able to use a simple graphical method with theoretically difficult 
distributions as are often encountered in the field. Additionally, PP methods provide a graphical presentation of 
statistical concepts in a form that is easily understood by beginners, including at school level.  I have found PP 
methods useful in introducing statistical concepts in the field courses I have run for the Field Studies Council at four of 
its centres and in field courses for zoology departments at Reading as well as at two other universities.  Moreover, the 
number of participants in field courses means that good frequency data can readily be collected. 
 Only the technique will be described here. The parameters being estimated are likely to be familiar and are 
explained in any textbook on biological statistics. 
 

THE FREQUENCY DISTRIBUTION TABLE 
 

Tabulate the data in order of magnitude of the observations. The example used here (Table 1, columns x and 
y) concerns the number of lichen patches found in 74 randomly placed square metre quadrats on a disused hard tennis 
court.   

With many different numbers in samples, it may be sensible to group the observations into classes, e.g. 1-10, 
11-20, 21-30, 31-40 etc. and use the mid-point of each class  (e.g. 5, 15, 25 etc.) when plotting x values on the graph 
paper.  

We then calculate the percentage of the samples each y value represents (Table 1. ‘% of total y’ column) and 
accumulate these percentages so that the figures (Table 1 ‘Accumulated. % of y’ column) show the proportion of the 
data which is included by each class plus all lower classes. 
   
 
 
 
 
 

                                                             
1 Sheets of probability graph paper do not appear to be available for purchase any longer but free downloads can be found by 
searching the internet for “normal probability graph paper”; the download www.weibull.com/pubs/paper_normal.pdf is an excellent 
example. 
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TABLE 1. Number of lichen patches in 74 square metre quadrats. 
  

Observations (x) = no. of patches Frequency (y) = no. of quadrats % of total y Cumulative % of y 
 6  1  1.35   1.35 
 7  4  5.40   6.75 
 8  8 10.81  17.56 
 9 15 20.27  37.83 
10 17 22.98  60.81 
11 15 20.27  81.08 
12  9 12.16  93.24 
13  3 4.06  97.30 
14  2  2.70  100.00 

              Total=74   

 
 

PLOTTING THE DATA ON PP 
 

Make the vertical scale on the graph paper a scale of the x values. The horizontal scale is already one of 
accumulated percentages (Cum. % y). 
 Now plot each x value at the intercept with its accumulated % y, i.e. 6 and 1.35, 7 and 6.75, 8 and 17.56 etc.  
Omit the 100% point; you will not have included the largest possible value in your sampling and you will see that if 
you place this point at the extreme right of the graph paper (99.99%) its position bears no relation to the other points. 
 View the graph paper from the vertical axis with the paper held horizontally at eye level. This is the best way 
of checking what kind of line (e.g. straight, curved, sigmoid) best fits the points. 
 

IF THE POINTS APPROXIMATE TO A STRAIGHT LINE: 
 

The distribution is ‘normal’ or close to ‘normal’.  The frequency distribution is symmetrical around the 50% 
point (median), which is also the arithmetic average (mean) of the observations in a sample. This is the maximum per 
cent of total y (see table), and this percentage decreases symmetrically in both upward and downward directions.  
Draw the straight line (Figure 1). 
 
 

 
 

FIGURE 1.  Probability plot of the normal distribution of lichen patches on a tennis court (data of Table 1). 



VAN EMDEN (2020). FIELD STUDIES (http://fsj.field-studies-council.org/) 

 © Field Studies Council  (10/03/2020) 

3 

To determine the median of the distribution (also the mean with a straight line): 
Project vertically from 50% on the horizontal scale to the straight line (Figure 2). The intercept with the line is 

the mean (the same as the median in a normal distribution) and can be read off on the vertical scale (9.78 in the 
example). 
 
To determine the standard deviation of the distribution: 

This gives the limits within which the middle 68% of the population falls. Therefore, project vertically to the 
line from the 16% and 84% points on the horizontal percentage scale. Project sideways to the vertical scale (Figure 2) 
and use a millimetre ruler to read off the two values (their distances from the mean should be equal). In the example, 
the two values are 8.18 and 11.38.  The frequency distribution can therefore be defined as 9.78 ± 1.60. 
 It is inevitable that fitting a straight line to points which deviate slightly from the line will give answers a little 
different from the standard statistical calculation, which gives the very similar result of 10 ± 1.69. 
 
To determine the standard error of the mean of the distribution: 

This is simply the standard deviation divided by the square root of the number of observations, i.e. in the 
example it is 1.60 ÷ √74 = ± 0.19. These limits can be added to Figure 2. 
 
 

 
 

FIGURE 2. The statistics of mean, standard deviation and standard error calculated from the probability plot of Figure 1. 
 
 

IF THE POINTS APPROXIMATE TO A SIMPLE CURVE: 
 

A curve shows that the frequency distribution is not normal, and therefore not symmetrical about the median. 
This occurs, for example, when the observations are clumped, so that the arithmetic mean lies either well below or well 
above the range of most frequent observations. The median (i.e. the most frequent observation) replaces the mean in 
the calculations. 
 
Draw the curve:  

Example data are given in Table 2 and Figure 3.  They concern the number of grasshoppers in 50 randomly 
placed square metre quadrats on a large area of grazed grassland. Figure 3 shows the fitted curve.  On an even sward, 
grasshoppers can be expected to show a random (not the same as ‘even’) distribution, and this type of distribution will 
plot as a curve, but variation in vegetation may lead to additional non-random clumping. 
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TABLE 2.  Number of grasshoppers in 50 randomly placed square metre quadrats (the calculations on small italics have been added in 
relation to the later calculation of the type of distribution these data represent). 
    

Observations (x)  Frequency (y) Number of 
grasshoppers 

% of total y Cumulative % of y 

   1   1  1  2   2 
  2   9 18 18  20 
  3  10 30 20  40  
  4   7 28 14  54 
  5  7 35 14  68 
 6  4 24  8  76 
 7  3 21 6  82 
 8  2 16 4  86 
 9  1  9 2  88 
10 2 20 4  92 
11 1 11 2  94 
12 1 12 2  96 
13 0  0   
14 1 14 2  98 
15 1 15 2 100 

       Total=50 Total =254   
 

 
 

FIGURE 3.  Probability plot of the slightly clumped distribution of grasshoppers (data of Table 2) with median and non-symmetrical 
standard deviations added. 

 
 

To determine the median and standard deviation of the distribution: 
Proceed as for a straight line relationship; i.e., project vertically to the curve from 50%, 16% and 84% on the 

horizontal scale to the curve, and read off the median (3.90 grasshoppers/quadrat in the example) and upper and lower 
standard deviations (1.78 and 7.80 respectively) on the vertical scale (Figure 3).  The median replaces the mean as the 
most frequent sample size in a non-normal distribution (the arithmetic mean in this example is actually larger at 5.08). 
The frequency distribution can therefore be appropriately defined asymmetrically as having a median of 3.90 (-2.12, + 
3.90). 

 
To determine the standard error of the median of the distribution: 

With asymmetric standard deviations, we first need to transform our distribution to a normal one (i.e. a 
straight line). This is done very simply by drawing a straight line between the standard deviation percentages on the 
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curve (this line is shown dotted in Figure 4). This exactly transforms the curve to normality without involving any 
particular known transformation function such as log, square root or arcsin.   

Projecting to the original straight line from 50% gives us a mean (transformed median) for this imaginary 
normal distribution, with the original standard deviation values now symmetrical around it.   The numbered sequence 
of steps that now follows is illustrated by the encircled numbers in the Figure: 

1. Extend the transformed median and upper and lower standard errors to the right-hand margin of the graph 
paper. Measure the distance between the two standard deviation values (in millimetres on a ruler is often 
more convenient than using the units on the vertical scale). This is 5.8 grasshoppers in the example.  Halve it, 
you have the standard deviation for the mean on the transformed scale. In Figure 4 this is 5.8/2 = 2.9 
grasshoppers.  

2. The standard error for samples of 50 data is 2.9/√50 = 0.41 Plot this symmetrically around the extended 
transformed median line. 

3. From where each of these standard errors of the transformed median intersect with the dotted line joining 
16% and 84%, project upward or downward to the original curve. 

4.  Project these intersections as well as the line for the original median to the right, and the median will now 
have, as is appropriate, asymmetrical standard errors at 3.9 (-0.38, + 0.45). 

 
 

 
 

FIGURE 4. Calculating standard errors for the probability plot of Figure 3.  Circled numbers show the sequence of graphical 
operations (see text). 

 
 

USING PP PAPER TO CHOOSE THE BEST TRANSFORMATION FOR NON-NORMAL DATA 
 

The graph paper is also useful for obtaining guidance as to the best transformation for a set of frequency data.  
If the non-normal distribution in question is well defined by the available data points, there are two approaches to 
identifying an appropriate transformation. 

1. If one of the standard transformations such as logarithmic or square root looks likely, this can quickly be 
checked by seeing if the appropriately transformed values plotted on the vertical scale are fitted by a straight 
line. 

2. Alternatively a straight line may be drawn between the standard deviation points as in Figure 4. Then project 
several points equally spaced on the vertical axis back to the straight line, and from there upwards or 
downwards to the plotted line for the original data. Project these intersections back to the vertical scale, and 
the relative distances between these last lines may suggest an appropriate transformation. 
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The type of non-normal distribution 
To identify the type of distribution, we need to calculate the arithmetic mean (not the median) and the 

variance.   We will use the data in Table 2 and Figure 3 for an example, where the arithmetic mean is 5.1 (i.e. 254/50 
from Table 2). 
 Begin with the difference between the upper and lower standard deviations (i.e. projecting to the vertical scale 
from the curve for the 16 and 84 percentage points on the horizontal scale (= 5.8). 
 Halve this value and square the result (= 8.4).  This gives a rough estimate of ‘variance’. Divide this by the 
mean (= 8.4/5.1 = 1.7). 
 If variance/mean approximates to 1, a random distribution is indicated. If variance/mean is less than 1, the 
distribution is more regular than random and if more than 1 it is more clumped.   
 Our example, with a variance/mean ratio of 1.7, is somewhat clumped.  Incidentally, doing the calculations 
directly from the data for comparison also gives a similarly clumped variance/mean ratio (2.0). 
  

TESTING THE SIGNIFICANCE OF THE DIFFERENCE BETWEEN THE MEDIANS OF TWO DISTRIBUTIONS: 
 

This is a graphical analogy of the t-test.  For the two distributions to compare we will use the lichen patch data 
in Table 1 and Table 3 (from a tennis court with a different surface).  
 Draw separately the lines for the two distributions as described earlier (Figure 5). In this example the 
distributions of lichen patches on both tennis courts are normal.  However, perhaps controversially, the significance 
test described here might also be applied to two non-normal distributions or even one normal and one non-normal 
one! 
 We already have the relevant calculations for the first tennis court (closed circles on Figure 5), and only need 
to transfer the median ( = the mean with a straight line) of 9.78  and its ± standard error limits of 0.19 to the vertical 
scale (solid lines). 
 For tennis court 2 (open circles), project vertically to the lines the median and – and + standard deviations (i.e. 
respectively the 16, 50 (median) and 84% points on the probability scale). Project these intersections to the vertical scale 
(dotted lines on Figure 6), giving a mean of 7.18 ± 1.35 (standard statistical computation gives 7.29 ± 1.38).  Divide this 
standard deviation by the square root of the number of observations, i.e. 1.35 ÷ √158  = ± 0.11 to obtain the standard 
error of the mean for tennis court 2 for insertion on the vertical scale on Figure 5.  

The standard error of difference between the two means is the sum of the two standard errors of the means, i.e. 
0.19 + 0.11 = 0.30.  By comparison, the means are 2.6 units apart, 8.7 times the standard error of difference. Frequency 
distributions involve sufficient observations to use the rule of thumb that this figure only needs to be 2 for us to accept 
that the means are significantly different in statistical terms i.e. taking many repeat samples of the same number of 
observations, the chances of getting a mean from either distribution outside twice the standard error of difference is 
less than 5% 

If either line is not straight (i.e. the distribution is not normal), simply obtain the standard error of difference 
by summing the two standard errors on side of the medians towards the other line. 
 
 
TABLE 3.  Data for lichen patches in 158 quadrats in tennis court 2. 

 

Observations (x) = no. of patches Frequency (y) = no. of quadrats % of total y Cumulative % of y 
  4  1  0.78   0.78 
  5  7  5.47   6.25 
  6 49 14.84  21.09 
  7 33 25.81  46.90 
  8 36 28.12  75.02 
  9 22 17.18  92.20 
10  8   6.24  98.44 
11  2   1.56  100.00 

           Total=158   
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FIGURE 5. Probability plot of the normal distribution of lichen patches on the second tennis court (data of Table 3) added to Figure 2. 
 
 

SEPARATING TWO OVERLAPPING NORMAL DISTRIBUTIONS 
 

The plot of data against cumulative % on a probability scale sometimes results in a sigmoid curve (as in 
Figure 6).   Such a curve is indicative of two overlapping normal distributions, and PP can be used to separate them. 
 The example in Figure 6 is a plot of the width of the head between the eyes (in mm) of 200 specimens of adult 
females of a leaf mining fly found in water traps. That the curve is sigmoidal suggests that two populations are 
represented; perhaps there are actually two very similar species masquerading under the same Latin name.  
 The first stage is to tabulate (Table 4) the data as far as ‘cumulative % of y’ as in previous Tables and plot the 
data on PP (Figure 6).  Note that we use the mid-point for each 2 mm head width range. We now identify the point of 
inflexion of the curve, the point where it changes from concave to convex.  In Figure 6 this is at the cumulative % of 58, 
and we mark this in the Table with emboldened typeface. The cumulative % values for the concave part of the curve 
(shown as A in Figure 7) remain unchanged and refer to the percentage scale at the bottom of the PP, but for the higher 
concave part (B) we start at the right hand end of the curve and use the cumulative % scale at the top of the PP which is 
reversed and increases from right to left.  This is the same as subtracting the figure in the cumulative % column from 
100 and produces the first extra column in Table 4. 
 Why do we do this?   The overlap between the populations is greatest between the right end of distribution A 
and the left end of distribution B. So, we can best identify the straight lines to plot for the two normal distributions 
from the non-overlapping ends.  
 The inflexion point of 58 % suggests that the two distributions represent respectively 58% and 42% of the 200 
flies measured.  To find the lines to plot as two distinct normal distributions we treat the 1-58 cumulative % values as 
population A and the 64-100 as population B.  For A we convert the data by multiplying them by 100/58 (italicised 
numbers in the end column of Table 4) and for B by multiplying the values in the extra column in the Table by 100/42 
(the underlined numbers in the end column). 
 The straight line plots for the two now separated populations A and B can now be drawn through the points 
for cumulative % so obtained, and the statistics of mean and standard deviation can be evaluated separately for the 
two distributions (respectively the 50% and 16% cumulative percentages  – see earlier).   This gives (Figure 7) a mean of 
2.39 ± 0.12 for A and 2.95 ± 0.16 for B. 
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TABLE 4. Head widths (mm) of females of a species of leaf-mining fly. 

 
Head capsule 

width(x) 
Mid-point 

of class 
Frequency (y) % of 

total y 
Cumulative 

% of y 
100 - cumulative % for points 

on the B part of the curve 
Points to plat for the 

two populations 
2.1-2.2 2.15 2 1 1  1.7 
2.2-2.3 2.25 18 9 10  17.2 
2.3-2.4 2.35 32 16 26  44.8 
2.4-2.5 2.45 32 16 42  72.4 
2.5-2.6 2.55 16 8 50  86.2 
2.6-2.7 2.65 16 8 58  100.0 
2.7-2.8 2.75 12 6 64 36 85.7 
2.8-2.9 2.85 12 6 70 30 71.4 
2.9-3.0 2.95 20 10 80 20 47.6 
3.0-3.1 3.05 14 7 87 13 31.0 
3.1-3.2 3.15 18 9 96 4 9.5 
3.2-3.3 3.25 6 3 99 1 2.4 
3.3-3.4 3.35 2 1 100   

  Total = 200     
 

 
 

FIGURE 6. Probability plot of the head width of females of a species of leaf mining fly suggestive of two overlapping frequency 
distribution. The point of inflexion on the percentage scale is identified. 

 
   
 As before, the standard error of the mean for each distribution can be calculated by dividing the standard 
deviation by the square root of the relevant number of observations (respectively 58% and 42% of 200 = 116 for A and 
84 for B).  Not unexpectedly, given the close relationship of the two groups of flies, the standard error of both means is 
very similar, 0.01 for A and 0.02 for B.  However, even taking the larger value of 0.02, the means are over 30 standard 
errors apart; this really rules out the possibility that the flies belong to the same population. It therefore appears there 
may be two what are called ‘cryptic species’ in the water trap samples. 
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FIGURE 7.  The separation of the probability plot of Figure 5 into the two normal distributions A and B (see text). 
 
 

CONCLUSIONS 
 

 The number of participants on Field Courses leads to the results of projects often being in the form of 
frequency distributions.  Probability graph paper can be a quicker way of analysing the data than entering a lot of data 
into a computer programme, and has the added advantage of teaching statistics in a way that is easily understood, 
even by those with no previous acquaintance with the subject.  Drawing a “best fit” line by eye through the points on 
the graph paper has some subjective element, and the estimates obtained for the statistics may well vary slightly from 
those obtained by the traditional algorithms, but they should be close enough that ecological interpretations will be 
valid. 
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